Electronic safe locks

14th of October LockCon 2023 Jan-Willem

Motivation

EE -> EE -> SA

- Designing electronics
- Analysing security of embedded systems
- Teaching

Lockpicking

- Community: Toool, Hackerspaces, Online
- Sharing knowledge: Blackbag, workshops
- Research: Whatever has my interest

Cutaways, and lever locks

When we teach lockpicking we usually revert to schematics of locks, and different models for demonstrating the functionality of locks. Usually required as the core functionality is well hidden, and not often observable in action. Multiple skilled machinists have made cutaway locks for the purpose of demonstrating the inner workings of real locks.

At one cutaway themed evening, we had over 50 unique cutaways on the table. From all brands and mechanisms. Some of which even the pins themselves were cutaway.

Search for: Search

Recent Posts

LockCon 2023 Schedule

Recent Comments No recent comment found.

Categories

- Lockpicking
- Keys
- Locks
- Impressioning
- Uncategorized
- Genera
- LockCon
- Conference
- Decoding
- Gatherings

Meta

- Log in Entries feed
- Comments feed
- We dB see s

riscure

Electronic safe locks

Introduction

Electronic locks

Electronic locks the ideal target?

- Usually uninteresting
- Not designed with security in minded
- Low impact
- RFID, BLE, mobile apps
- Unobtainable or expensive
 - Cliq
 - XT
 - Cyberkey

Electronic locks

Electronic safe locks are different story

- Small attack surface
- Standalone
- Good basis for security
- Hardware attacks
- Affordable

Electronic safe locks

- Force multiplicatation
- Secure by design

Sheet: Keypad POWERD GNDD	Sofo	Sheet: Internal PPOWER DGND
KEYPAD KEYPAD_BUZZER KEYPAD_LED	Door	♦KEYPAD ■KEYPAD_BUZZER ■KEYPAD_LED
File: Keypad.sch		File: Internal.sch

Electronic safe locks

Consumer / commercial

- Special requirements:
 - UL 2058 Type 1
 - Easy to use
 - Reliable locks for a good price
 - Quality differs

Pictures by eevblog is licensed with CC BY 2.0.

11

Electronic safe locks

Banking and Pharmacy

- Special requirements:
 - Multi user
 - Auditing
 - Delays
 - 2FA

Electronic safe locks

US Goverment

- Special requirements:
 - FF-L-2740 B
 - EMP proof
 - TEMPEST proof
 - Etc
- Kaba Mas X0 series
 - X07 to X10

Target

Kaba mas X0* locks

- X07 1992
- X08 1998
- X09 2002
- X10 2013
- FF-L-2740B

Asset

- Program content
- Open lock without combination
- Dialled combination
- Settings

riscure

Embedded System Security

Welcome!

Target -> Asset -> Security

Treat modelling

- Attacker, Assets, Vulnerabilities, etc
- Vulnerability analysis
- Analyse previous work

Test the potential vulnerabilities with highest impact

JIL rating

Attacker model

riscure

The attacker: Me

- 10y+ lockpicking
- 5y+ Electronics design
- 3y+ Embedded security
- 1000 hours to invest
- Limited access to specialized tools (<10k)
- Full access to basic tools (<1k)
- Knowledge to create custom tools (<1k)
- Access to public knowledge of the target
- Access to 10+ samples
 - Can move laterally between targets
- Doesn't give up easily

Embedded Systems & Security

Vulnerable to attacks Logical Physical Side-Channel Analysis Fault Injection

Simple Power Analysis

Signal leakage from busses, registers, ALUs, etc.

Example: 4-digit password verification attempts

PWD

Concept - Glitching

Inject data fault through glitches on power supply or clock

- Stored data (memory)
- Intermediate data (registers, buffers, cache, bus)

Twin Scan for two laser spots

- Two laser sources through one microscope objective
- 2. Each beam can be positioned and both lasers can be fired independently

CISCUCE

- 3. Laser spots distance bound by field of view
- 4. Closed loop control system
- \leftarrow 5x objective, 1x zoom, \oslash 3.6 mm (piñata)

How to find the right parameters?

22

riscure

Electronic safe locks

Previous work

Published Attacks

Side-channel attacks on high-security electronic safe locks

- Plore, 2016
- Defcon 24
- https://www.youtube.com/watch?v=IXFpCV646E0

6120 – System model

https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentati ons/DEF%20CON%2024%20-%20Plore-Side-Channell-Attacks-High-Security-Locks-UPDATED.pdf

Published Attacks: Plore Defcon 24

https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentati ons/DEF%20CON%2024%20-%20Plore-Side-Channell-Attacks-High-Security-Locks-UPDATED.pdf

Published Attacks: Plore Defcon 24 *ciscure* 6120 – Power analysis 1 nibble per keycode digit Only lower byte in each EEPROM word is used H 2.000ms 1.000 G Sa/s Digit 1 Digit 2 IGOL D 7.14000000ms ₹ 1 648m Actual data line Current consumption

https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentati ons/DEF%20CON%2024%20-%20Plore-Side-Channell-Attacks-High-Security-Locks-UPDATED.pdf

Cur:*****

Avg: *****

Min:*****

Avg:1.020 V Min:898.0mV Avg: 520. Ous

Min: 520. Ous

:520. Ous

Cur:****

Avg: *****

Min: *****

destandes de sta

Avg:62.45us

Min: 1.000us

50 0mV

Published Attacks

No MAS: (misadventures in high security locks)

- Mike Davis, IOActive, 2019
- Defcon 27
- https://www.youtube.com/watch?v=viU8Qs1Sccg

Published Attacks: Mike Defcon 27

riscure

https://media.defcon.org/DEF%20CON%2027/DEF%20CON%2027 %20presentations/DEFCON-27-Phar-No-Mas-How-One-Side-Channel-Flaw-Opens-Atm-Pharmacies-and-Government-Secrets-Up-to-Attack.pdf

Published Attacks: Mike Defcon 27

riscure

https://media.defcon.org/DEF%20CON%2027/DEF%20CON%2027% 20presentations/DEFCON-27-Phar-No-Mas-How-One-Side-Channel-Flaw-Opens-Atm-Pharmacies-and-Government-Secrets-Up-to-Attack.pdf

Published Attacks: Mike Defcon 27

https://media.defcon.org/DEF%20CON%2027/DEF%20CON%2027% 20presentations/DEFCON-27-Phar-No-Mas-How-One-Side-Channel-Flaw-Opens-Atm-Pharmacies-and-Government-Secrets-Up-to-Attack.pdf

Published Attacks: Michael Heubler

riscure

https://toool.nl/media/LockCon 2019 mh Bluetooth Locks and X-09 update.pdf

34

E shock

riscure

35

Published: Jan-Willem LockCon '18

Close enough

- Cocktail Sause
- Ketchup
- Curry
- Garlic Sause
- Shower gel

Published Attacks

Book

- Electronic Safe Locks
 - Lance Mayhew

riscure

Novel work on the X0 locks

Hurdle: Access to samples

Samples from the USA

- Ebay bulk
- Trade with fellow lockpickers
- Shipping cost is bottleneck

X-09TM Type 1F HIGH SECURITY ELECTRONIC LOCK

.

ee

111

ITEN MUMBER

GENERAL SERVICES ADMINISTRATION APPROVED SECURITY CONTAINER

HAMILTON PRODUCTS GROUP, INC.

Hardware Reverse engineering

HWRE

- Slow progress over a year
- Willing to know too many details
- Focussed on all X0* at the same time
- Required to learn HWRE
- Old components impossible to find
- Do I really need to go this deep?
- Spend ~1 month full time on the process

	1	2	3	<u>ل</u> ر	5	6	7	8	3	10 -	
A	Fr	I CRZ	CRN .	CR3	CRI	Riz	RU.	CRIO	, Q 8	Q15 T	
	Q17	G 18	• ८२७	C28:	RU1.				4	4	_
	41		us	NBE	w	Rub	CR7	CRG	Q2 .	93	
-	1 4	68					us	ng	P1	RTI	_
-	Cro	FBS	220	819	B	(27	R39	R30 -	R38	CHER #	•
	Guy "	R36	Q13.	an	RIT	6.19	615	QIIY	582	(17 -	
	(i)	Rab	218	6110	RSI	RIJ	125	CRAZ	C39	RI	-
	23.	Q.4	cn.	Rri	67	CRU	(21)	235	136=	CT1 -	
											Contraction of the second seco

PCB Editor

Place Route Inspect Tools Preferences Help

🖶 📆 🖯 C 🔎 💭 Q Q Q Q 🔍 🛳 🖕 A 🖂 🖓 🖓 🚻 🗱 🐻 🕨 F.Cu (PgUp) 🔍 🖊 🐉

~ Zoom 35,00

ass width 🗸 📮 Via: use netclass sizes 🗸 Grid: 0,1270 mm (0,0050 in)

8051

- Locked & fused & encrypted
- Xgcu TI866II Programmer with Xgpro
 - Changed to Minipro (CLI)
- Listen with a logic analyzer
- Acquired open samples
 - Ebay, not cheap
 - Pre-programmed ⊗

🜆 Xgpro v10.80																						– 🗆 X						
File(<u>F</u>) Select IC(<u>S</u>) Project(<u>P</u>) Device(<u>D</u>) Tools(<u>V</u>) Help(<u>H</u>) Language(<u>L</u>)																												
🗃 LOAD 🛛 🖶 SAVE	$ \mathfrak{D}_{\mu}$	AUTO	Ч́D _{CH}	ECK	FD _{BL}	_{ank} č		CFY C	READ			+	ADD	Ŗ	AM	Ľ	rase PROG. 🛄 💡	ABOUT	CALCU.	А в= ®)-ү	TV							
Select IC IC Information(No Project opened)																												
	P8	37C58	SU .					-	ChipTy	/pe:	MCL		utor (ChkSu	um: (0x005	54 DF34				XGe	cu [®] Dro						
Set Interface									IC SIZ	e:	0.00	000 8	ytes (5270	оо ву	tes j	+ 0X+0 bytes				/=00							
 ZIF socket 	01	ICSP	port		Γ	ICSP	_vcc	: Enab	le	١	/cc cu	rrent	Imax	D	efault	. –	🖸 8 Bits 🛛 16 Bits	Up	ograde is availat	ble		Save Log Clear						
Address	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Е	F	ASCII	Il										
0000-0000:	02	00	90	32	FF	FF	FF	FF	FF	FF	FF	30	07	10	D2	ØD		-	1 Program	************	***********	*****						
	32 CD	FF	FF	30	07 EE	02 FF	D2	0E FF	32 EE	FF	FF	02 EE	00 EE	90 FE	02 FF	03	202		*********	******	*******	*****						
0000-0030:	44	46	4D	30	36	2D	31	20	20	20	20	20	20	20	20	20	DFM06-1		Device 1:	: TL866II-Pl	us Ver: 04.0	2.124						
0000-0040:	52	45	4C	2D	41	2D	56	30	2D	43	31	2D	45	31	20	20	REL-A-V0-C1-E1		1200 **********	************	**********	*****						
0000-0050:	56	35	2E	32	30	2E	30	32	20	20	20	20	20	20	20	20	U5.20.02		P87C58U Memory Size : 0x00008000									
0000-0070:	32 4D	30 61	30 72	39 6B	20 75	73	32	20 48	31 61	30 69	20	20 74	20	20	20	20	Markus Haist											
0000-0080:	4D	48	69	6E	74	65	72	66	61	63	65	20	20	00	00	00	MHinterface											
0000-0090:	90	01	FE	12	08	A4	FC	F5	49	05	82	12	08	A4	F5	4A	J											
0000-0000:	50	B4	FF RJi	04 75	C2 88	49	C2	4A 80	75	81	5F 0.9	12	0A 75	9B 88	12	08	λΙ.JU											
0000-0000:	88	D2	8A	C2	A8	C2	AA	C2	A9	C2	AB	D2	AF	12	ØA	A2												
0000-00D0:	75	81	5F	12	ØB	7E	12	04	E9	75	83	00	75	82	04	12	u~uu											
0000-00E0:	08	A4	A2	E7	92	09	D2	B7	30	B7	03	02	06	01	02	OD	0											
0000-0100:	40	н8 38	EZ 4B	00	00	00	00	00	00	05 1E	54 66	00	01 04	00	03	00	.8Kf											
0000-0110:	00	ØF	33	00	08	00	04	00	00	07	99	00	10	00	05	00												
0000-0120:	00	03	CC	00	20	00	06	00	00	01	Eó	00	40	00	07	00												
0000-0130:	00	00	F3 CC	00	80 66	00	08 00	00	00	00 04	00 E6	01 02	00	00	09 00	00												
0000-0150:	00	02	73	04	00	00	OB	00	00	01	39	08	00	00	00	00												
0000-0160:	00	00	A1	10	00	00	ØD	00	00	00	00	00	62	00	ØF	00	b											
0000-0170:	00	C2	07 D.0	C2	06 75	20	09	03	02	03	07	85	81	41	C2	AA	A											
0000-0190:	8C	н8 42	87	ну 75	75 8A	3н 00	00 75	74 8C	00	42	80 87	00 C2	75 8C	8н 85	8C	43	.B.uuBC		<			>						
FLASH	En	cryp.	тв		Con	fig		Devic	e.Info																			
- Options										- IC (Config	Infor	mator	۱—														
Pin Detect			E d	herk	ID						-																	
Erase before					10							Lo	ock By	te: 0	x00													
Verify after				uto S	5N NL	ЛМ																						
Skip Blank			Addr	Rand	ae: 🖸	ALL	C	Sect																				
Blank Check			0x 🗔	0000	0000	->	00	00755	F	-																		
				0000	0000		1 00	00777		[

Ready

Chip reverse engineering

- Decap many chips
 - Heat & twist
- Polishing
- Photographing
 - Metallurgical microscope
 - Stitching 208MP
- o Other
 - Micro probing
 - SEM from friends
 - International collaboration

Fault injection

- o (Non) invasive Hardware attack
 - Relatively straightforward process
 - Setup for <€1000
 - Difficult to do right
- Methods
 - Voltage
 - Timing
 - Clock
 - Electromagnetic
 - Lasers

Fault injection

- o PicoEMP
 - DIY
 - Opensource
 - € 100 in parts
 - Slightly underpowered
- Human XYZ
 - Pantograph

Fault injection

• Human XYZ

56

Fault injection

• Sample preparation for Laser FI

- Milling
 - Proxxon
 - Learning curve
 - Little feedback
- Dremel
 - Quick and reliable
 - Needed a new adapter
- Multiple chip versions

Laser = Success

Process

- One month in off hours
- o X07
 - Successful
 - Failed to dump 2nd chip
- o X08
 - Successful
- o X09
 - Successfully dumped multiple versions

Laser = Success

- "Encryption"
- XOR table
 - More difficult than expected

Attacks

- Repeating content
- Known content
- o ASCII
- Partial unencrypted

- -> Factory defaults
- -> Copyright notice
- -> 64 / 128 byte blocks

Laser = Success

o X07

- Copyright 1990,91,92 Dan L. Thompson Mas-Hamilton Group
- o X08
 - Copyright 1999 Mas-Hamilton Group
- o X09
 - Copyright 2002 Kaba-Mas Dan Thompson

- o Learn 8051 architecture
- o Learn Software reverse engineering
- Try a more 'Abrasive' method

🥥 @Jan-Willem @abrasive Congrats on the work. I'd like to compare notes some time about the XO memory dump. I've done something similar, but it was serious effort involving lasers...

damn son, I didn't even desolder the target in the end ${\displaystyle \mathop{\Longleftrightarrow}}$

